11.4 - Jump Processes and Their Integrals
11.4.2 Quadratic Variation
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Quadratic Variation

Definition

o Let X(t) be a jump process.

» To compute the quadratic variation of X on [0, T],

we choose 0 =1, <1, <1, <...<t =T, denote the set of these times by Il = {7, 1, ..., }, denote the length of the
longest subinterval by

|1L]| = max(t,,, — 1), and define
n—1
On(X) = ) (X(t;y)) — X(1)))*
j=0

 The quadratic variation of X on [0, T] is defined to be

(X, XI(T) = lim QOn(X)
-0

where of course as ||II|| — 0 the number of points in II must approach infinity.



Quadratic Variation

Definition

* |In general, [X, X|(T) can be random (i.e., can depend the path of X)

* However, in the case of Brownian motion, we know that [W, W|(T) =T
T

_In the case of an It6 integral I(T) = J ['(s)dW(s) with respect to Brownian
0
T T T
motion, [1, I](T) = J (T(s)dW(s))* = J [(s)*dW(s)* = J [*(s)ds can
0 0 0

depend on the path because | (5) can depend on the path.



Quadratic Variation

Cross variation

» Let X,(7) and X,(?) be jump processes
n—1
Cr(X,. Xp) = ), (Xy(t1 — X ()Xot — Xo(1)
j=0

and

(X1, X, (1) = HllIiHInO C. (X, X5)



Quadratic Variation
Theorem 11.4.7

e« Let X(¢) = X;(0) + [,(¥) + R,(¢) + J,(¢¥) be a jump process, where

[

[
1,(t) = J [, (s)dW(s), R,(¢) = { ®,(s)ds, J,(?) is a right-continuous pure jump process.
0 0

Then X7(7) = X4(0) + 1;(¢) + Ry(?) and

T
X, X 1(T) = | X7, X I(T) + [/}, J1I(T) = J F%(S)dS + Z (AJl(S))2 (11.4.11)
0 0<s<T



Quadratic Variation
Theorem 11.4.7

e Let X,(¢) = X5(0) + L,(¥) + R,(¢) + J,(¢¥) be another jump process, where

[ [

[5(s)dW(s), R,(t) = { O,(s)ds, J,(1) is a right-continuous pure jump process.
0

Iy(1) = [
0
Then X5(7) = X5(0) + I,(¢) + Ry(¢) and

T
X, X,](T) = [XE, XEWT) + [J,, L)(T) =J DTy)ds + Y AJ(s)ATy(s) (11.4.12)
0 0<s<T



X0 =XO0)+It)+ R +J() (11.4.1)

X()=XO0)+I(t) + R(»)
T

Quad rati c va riati on 1 X, X,](T) = [XIC, ch](T) + [J, LI(T) = J' ()5 (s)ds + Z AJ(s)AJ,(s) (11.4.12)
0 0<s<T
Theorem 11.4.7 PROOF
 Only need to prove (11.4.12), since (11.4.11) is the special case of (11.4.12) in which X, = X
n—1
Cr(X,. X)) = ) (Xy(t4)) = X, ()Xot 1) — Xo(1)
=0
n—1
rEE = Z (X1t — X&) + J1(t541) — 1) X (X5(840) — X5(8) + Lr(t41) — Ja(8)
=0
n—1
FE = ) (X{(t,) — X{)X5(,,) — X5(1)
/= (11.4.13)

n—1

+ ) (X{(t0) = X{a) Uty ) — T(8)
=0
-

+ Z (J1(fj+1) - J1(6))(ch(t]+1) o ch(t]))
j=0

n—1
DR EFRACATERACH)

J=0



T
(X, X,1(T) = [Xf,ch](T)+[J1,J2](T)=J Cy(OTy(s)ds + ) AJy()AJ(s) (11.4.12)
0 <s<

0 T

Quadratic Variation
Theorem 11.4.7 PROOF

n—1
o 2 Xi(t) = X[ X5 (141) = X5(1) = X, X51(T)
j=1

T

) = [ [ ($)5(s)ds
0

UL BIT) = ) AT(s)ATy(s)

O0<s<T



X0 =XO0)+It)+ R +J() (11.4.1)

X()=XO0)+I(t) + R(»)
T

Quad rati c va riati on 1 X, X,|(T) = [XIC, ch](T) + [J, LIT) = J' [ ()5 (s)ds + Z AJ(s)AJ,(s) (11.4.12)
Theorem 11.4.7 PROOF
 Only need to prove (11.4.12), since (11.4.11) is the special case of (11.4.12) in which X, = X
n—1
Cr(X,. X)) = ) (Xy(t4)) = X, ()Xot 1) — Xo(1)
j=0
n—1
= ) (Xj(ti) — X[(t) + J1(t41) — (1) X (X555 — X5(8) + Dh(4,) — Ih(1)
=0
"
= Y (XE(t41) = X)X (W) — XEE))
= . (11.4.13)
+ ) (X{(t0) = X{a) Uty ) — T(8)
=-0-

n—1
+ Z (J1(fj+1) - J1(6))(ch(t]+1) o ch(t]))
j=0 ——

n—1
DR EFRACATERACH)

J=0



T
X, X,)(T) = [Xf,X§](T)+[J1,J2](T)=J C()T)ds + Y AT ()AL(s) (11.4.12)
0

0<s<T

Quadratic Variation
Theorem 11.4.7 PROOF

n—1
PHEATED (A CARENA]
j=0

n—1
< max |X{(t,) = X{@)] - Y [(tyy) — L)
=0

0<j<n-1

< max [ X(() - X)) D [ AJ(s)]
SJSN—
/ AR T — 0 #szIEB R 0<s<T ENIEE R SRR

n—1
Similarly, the third term | Z (X5(11) — X5)(J1(t:41) — J1(1;)) | has limit zero.
=0



X0 =XO0)+It)+ R +J() (11.4.1)

X()=XO0)+I(t) + R(»)
T

Q uad rati c va ri ati o n 1 X, X, (T) = [ch, ch](T) + [J, LIT) = [ ' ()5 (s)ds + Z AJ(s)AJ5(s) (11.4.12)
0 0<s<T
Theorem 11.4.7 PROOF
 Only need to prove (11.4.12), since (11.4.11) is the special case of (11.4.12) in which X, = X
n—1
Cr(X,. X)) = ) (Xy(t4)) = X, ()Xot 1) — Xo(1)
j=0
n—1
= ) (Xj(ti) — X[(t) + J1(t41) — (1) X (X555 — X5(8) + Dh(4,) — Ih(1)
j=0
n—1
= Y (X<t,) = XA KS () — XE(@)
= (11.4.13)

S
[

+ ) (XE(t,) - XEG, D)

T
S

n—1

+ Z (1(f) = 2Tr1) — X5(1)
j=0
n—1

+ ) (14 — J16)(Ua(t4) — Jo(1)

T
S



T
X, X,](T) = [Xf,X§](T)+[J1,J2](T)=J D(Oy(s)ds + . AJy()Ady(s) (11.4.12)
0 0<s<T

Quadratic Variation
Theorem 11.4.7 PROOF

 Let us fix an arbitrary @ € €2, which fixes the paths of these processes, and choose the time points in 11 so close together that

there is at most one jump of J; in each interval (¢, tj+1], at most one jump of J, in each interval (z,, th], and if /; and J, have a

jump in the same interval, then these jumps are simultaneous.

. Let A, denote the set of indices j for which (¢, tj+1] contains a jump of J;, and let A, denote the set of indices j for which (¢, tj+1]

contains a jump of J,.
n—1
D Ui(t,) = L)yt ) — Jo(1))
j=0

= ) () = L) Unty) — Ho(1))

jEA,NA,

= ) AJ(9)AJ(s)

0<s2xt_ T (EEREEEL)




T
X, X,)(T) = [Xf,X§](T)+[J1,J2](T)=J C()T)ds + Y AT ()AL(s) (11.4.12)
0

0<s<T

Quadratic Variation
Remark 11.4.8

* |n differential notation, equation (11.4.12) of Theorem 11.4.7 says that if

X, (f) = )%0{ + X0 + Jy(0),  Xo(t) = X%O{ + X(0) + J(0),

EEEEER X0 =X©O0)+1(H)+ R(@)

then
dX,(1)dX,(t) = dX;(0)dX;(t) + dJ,(t)dJ» (1)
In particular,

dX(D)dJ(t) = dXS(0)dJ, (1) = 0

* In order to get a nonzero cross variation, both processes must have a dW term or the processes

must have simultaneous jumps



Quadratic Variation
Corollary 11.4.9

« Let W(¥) be a Brownian motion and M(¢) = N(t) — At be a compensated Poisson process relative to the same
filtration F(¢) (Definition 11.4.1). Then
(W, M]() =0, >0.
* PROOF
In Theorem 11.4.7, take I,(¢) = W(?), R,(¢) = J;(r) = 0 and take

] [X,, XC1(T) = [X7, X51(T) + [J, LI(T) = J I () 5(s)ds + Z AJ ()AL, (s) (11.4.12)
¢ Meanlng 0 L(1)50 » ZIER A0 0<s<T (&0 B A0

In Corollary 11.5.3 that the equation [W, M]|(t) = O implies that W and M are independent, and hence W and N

are independent.

A Brownian motion and a Poisson process relative to the same filtration must be independent.



Quadratic Variation
Corollary 11.4.10

« Fori = 1,2, let X;(¢) be an adapted, right-continuous jump process.

In other words, X (1) = X.(0) + L(?) + R(¢) + J(¢), where [(t) =

rl

70

o Let Yi(O) be a constant, let ¢/(s) be an adapted process, and set

X () = X,0) +

By definition,

['(s)dW(s), Ri(t) =

r

D.(5)dX (s)

70

X ()= X0+ 1)+ R+ J @

where
i i(z) — ~ (I)i(s)Fi(s)dW(S), Fi(t) =
JO

r 1

J0

rl
©.(s)ds, and J(?) is a pure jump process.

70

O()0,(s)ds, J () = ) DLs)AJ(s)

O<s<t



Quadratic Variation
Corollary 11.4.10

« Note that Yi(t) is a jump process with continuous part Yf(t) = Yi(O) + Z(t) + fﬁi(t) and pure jump part f;(t). We have
[Yla YZ](ZL)
= [ X5, X510) + [/}, 1,10

= | ©(5)D,()I(s)(s)ds + Z D, (5)D,(s)AJ(5)AJ,(s5)

70 0<s<t
rl

D, (5)D,(s)d[ X, X5](s)

J0



Quadratic Variation
Remark 11.4.11

e Corollary 11.4.10 may be rewritten using differential notation.

* The corollary says that if
dX (1) = ®,()dX,(t) and d X ,(t) = D,(1)dX,(7)
then
dX |(Dd X () = ®,()D,()dX, (H)dX,(1)



Thanks for listening




